Kickoff Meeting Agenda

1. Introductions
2. Project Overview
3. Stakeholder Meetings
4. Approach to Developing Unimpaired Flows
5. Simplified Water Allocation Model (SWAM)
6. Other – Questions, Comments, Closing Remarks
Project Scope Overview

Major Steps for Each of Eight Models

Data Collection
- Streamflow, M&I and ag withdrawals, discharges, census data, precipitation, reservoir operations, interconnections, facility operation dates, etc.

Data Analysis
- Gap filling and record extension

UID Development
- Daily mean UIFs

Task 1

Basin Schematic
- Model framework development

Task 2

Model Calibration
- Reproduce actual conditions

Baseline Model Runs
- Simulate current conditions
Intended Model Uses

• Evaluate surface-water availability in support of the new Surface Water Withdrawal, Permitting, Use, and Reporting Act

• Predict future surface-water availability using projected demands

• Develop regional water-supply plans

• Test the effectiveness of new water-management strategies or new operating rules

• Evaluate the impacts of future withdrawals on instream flow needs and minimum instream flows as defined by regulation

• Others?
Data Needs / Data Collection

<table>
<thead>
<tr>
<th>Data Need</th>
<th>Primary Source</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow and Meteorological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streamflow</td>
<td>USGS</td>
<td>Daily</td>
</tr>
<tr>
<td>Evaporation</td>
<td>SC Climatologist</td>
<td>Daily/Monthly</td>
</tr>
<tr>
<td>Precipitation</td>
<td>SC Climatologist</td>
<td>Daily/Monthly</td>
</tr>
<tr>
<td>Withdrawals and Discharges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M&I Withdrawals</td>
<td>DHEC and Utilities</td>
<td>Monthly</td>
</tr>
<tr>
<td>NPDES Discharges</td>
<td>DHEC and Utilities</td>
<td>Monthly</td>
</tr>
<tr>
<td>Ag Withdrawals</td>
<td>DHEC</td>
<td>Monthly</td>
</tr>
<tr>
<td>Hydropower/Cooling</td>
<td>DHEC and Elect. Util.</td>
<td>Daily/Monthly</td>
</tr>
<tr>
<td>Groundwater Withdrawals</td>
<td>DHEC</td>
<td>Monthly</td>
</tr>
<tr>
<td>Reservoirs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating rules (current/historical)</td>
<td>Electric Utilities</td>
<td>-</td>
</tr>
<tr>
<td>Historic Elevations</td>
<td>Electric Utilities/USGS</td>
<td>Daily/Monthly</td>
</tr>
<tr>
<td>Stage/Storage/Elevation</td>
<td>Electric Utilities</td>
<td>-</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instream Flow Requirements</td>
<td>DHEC</td>
<td>-</td>
</tr>
<tr>
<td>Drought Management Plans</td>
<td>DHEC and Utilities</td>
<td>-</td>
</tr>
<tr>
<td>Previously Developed UIF Datasets</td>
<td>NC DWR, GA EPD</td>
<td>-</td>
</tr>
<tr>
<td>Basin Characteristics</td>
<td>GIS</td>
<td>-</td>
</tr>
<tr>
<td>Census Data</td>
<td>US Census</td>
<td>-</td>
</tr>
</tbody>
</table>
Schedule

Preliminary and Recurring Tasks
- Kickoff Meeting
- Modeling Plan Development
- Installation & Testing on DNR & DHEC Servers
- Progress Reports

Pilot Basin Model

Task 1 Development of Inflow Datasets
1.1 First Stakeholder Working Session
1.2 Data Collection
1.3 Data Analysis, Extension and Gap-Filling
1.4 Unimpaired Flow Development

Task 2 Surface Water Model Development
2.1 Model Framework
2.2 Second Stakeholder Working Session
2.3 Calibration & Verification
2.4 Baseline Model Runs

Task 3 Model Training

Remaining Seven Basin Models

Task 1 Development of Inflow Datasets
1.1 First Stakeholder Working Session
1.2 Data Collection
1.3 Data Analysis, Extension and Gap-Filling
1.4 Unimpaired Flow Development

Task 2 Surface Water Model Development
2.1 Model Framework
2.2 Second Stakeholder Working Session
2.3 Calibration & Verification
2.4 Baseline Model Runs

Task 3 Model Training
Near Term Schedule and Deliverables
Saluda Basin

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling Plan</td>
<td>Oct 15</td>
</tr>
<tr>
<td>Quarterly Reports</td>
<td>Nov 15/Feb 15/May 15</td>
</tr>
<tr>
<td>UIF Methodology</td>
<td>Dec 1</td>
</tr>
<tr>
<td>Saluda Model Framework</td>
<td>Jan 15</td>
</tr>
<tr>
<td>UIF Dataset</td>
<td>Mar 1</td>
</tr>
<tr>
<td>Draft Baseline Model Runs</td>
<td>May 1</td>
</tr>
<tr>
<td>Final Calibrated Model</td>
<td>Jun 1</td>
</tr>
<tr>
<td>Training/Users Manual</td>
<td>Jul 30</td>
</tr>
</tbody>
</table>
Project Quality Management Process

• Clarify key project stakeholders roles and responsibilities
• Develop a clear understanding of the purpose, objectives and expectations of the project
• Develop consensus on the most important factors necessary to ensure a successful project
• Develop plan of action that will help the project team meet the project objectives
Project Critical Success Factors

• Modeling Plan/Pilot Model
 – *We must use the pilot model and modeling plan to develop a sound, clear, and transferable approach and template, and achieve consensus.*

• Communication
 – *We must develop and follow an established internal communication approach with a dedicated team having the proper skills to ensure consistency in execution and continually address critical success factors.*
Project Critical Success Factors

• **Data Collection**

 - *We must develop an efficient data collection approach that is appropriate to the model scale, clearly defines the period of record, identifies critical data, and documents the sources of data collected.***

• **Unimpaired Flows**

 - *We must achieve agreement on a consistent methodology to develop unimpaired flows, and the results.*
Project Critical Success Factors

• Quality
 – *We must follow CDM Smith’s Quality Management Procedures (QMP), which include careful review and quality control of the products to ensure the highest quality before releasing to the client and public.*

• Modeling
 – *We must clearly define and achieve model requirements to meet the overriding objectives and stated future uses of the models, with a focus on model robustness, usability, transferability, defensibility, and flexibility.*
Project Critical Success Factors

• Stakeholders

 - We must understand our role and work with DNR, DHEC, and the facilitator, to build understanding and agreement on the technical approach.
Kickoff Meeting Agenda

1. Introductions
2. Project Overview
3. Stakeholder Meetings
4. Approach to Developing Unimpaired Flows
5. Simplified Water Allocation Model (SWAM)
6. Other – Questions, Comments, Closing Remarks
Stakeholder Meetings

- Proposed Approach
 - Up to two meetings per basin
 - 1st Meeting to introduce model framework, present approach and assumptions, and explain data needs
 - Potential 2nd meeting to refine or confirm assumptions and clarify data received

- Role of Facilitator
Kickoff Meeting Agenda

1. Introductions
2. Project Overview
3. Stakeholder Meetings
4. Approach to Developing Unimpaired Flows
5. Simplified Water Allocation Model (SWAM)
6. Other – Questions, Comments, Closing Remarks
Draft Process Diagram for Unimpaired Flows for South Carolina

DATA COLLECTION
- Complete vs. Incomplete records and possible reference gages
- All USGS daily flow records
- Basin characteristics for each USGS gage: slope, area, land use
- Date reservoirs put into service
- Reservoir records (daily or monthly): Elevation, W/Ds, releases, evap, precip
- Storage-Area-Elevation relationships
- Operating rules, where available
- Surface water and groundwater use inventory (with starting service dates)
- Monthly water withdrawals
- Monthly discharges of cooling water, treated wastewater, process water, etc.

UNREGULATED FLOWS
- USGS flows adjusted for reservoir operations: “Unregulated Flows”
- Hydrologic routing with time lags if needed

GAP FILLING
- Gap filling of unregulated flows:
 - MOVE2
 - Regression on watershed features
 - Area Ratios
- Gains/Losses due to storage impacts

UIF Components
- Incremental unregulated flows by reach
- UIFs & current condition flows from NC or GA
- Reservoir evaporation and precipitation
- Net gain or loss per reach

UIFs
- Use Hindcasting using trends and data to project estimated withdrawals and discharges back in time where records may not be available.

Some tasks may be iterative or re-sequenced

Check homogeneity/statinerity

Data and Trend Analysis

Unimpaired Flows
Saluda Basin
Kickoff Meeting Agenda

1. Introductions
2. Project Overview
3. Stakeholder Meetings
4. Approach to Developing Unimpaired Flows
5. **Simplified Water Allocation Model (SWAM)**
6. Other – Questions, Comments, Closing Remarks
Web Accessibility Options

- **Citrix Deployment** provides SWAM access behind firewall that simulates a desktop environment
 - Simple, secure, suitable for number of concurrent users
- **Web SWAM** resides on web as a distributed application
 - Large number of concurrent users; requires significant modification
- **Hybrid SWAM** is a combination of first two options
 - Large number of concurrent users; requires significant modification
- **Desktop SWAM** eliminates web accessibility issues
 - User simply registers then downloads desired basin model
 - Model is updated and run locally
Kickoff Meeting Agenda

1. Introductions
2. Project Overview
3. Stakeholder Meetings
4. Approach to Developing Unimpaired Flows
5. Simplified Water Allocation Model (SWAM)
6. Other – Questions, Comments, Closing Remarks